
September 2017 DocID14798 Rev 10 1/75

1

UM0560
User manual
STM8 bootloader

Introduction

This document describes the features and operation of the STM8 integrated bootloader
program STSW-STM8068. This code embedded in the system memory of the device (ROM
memory) allows memories, including Flash program memory, data EEPROM and RAM, to
be written into the device using the standard serial interfaces LINUART/UART/USART, SPI
and CAN.

The bootloader code is similar for all STM8 versions. However, even though a peripheral
may be present in a product, the product may not support it (for example the SPI is not
supported in 128-Kbyte devices). In addition, different STM8 device types support different
peripherals (see Table 5: Serial interfaces associated with STM8 devices for detailed
information).

For further information on the STM8 family features, pinout, electrical characteristics,
mechanical data and ordering information, refer to the STM8 datasheets.

www.st.com

http://www.st.com

Contents UM0560

2/75 DocID14798 Rev 10

Contents

1 Bootloader introduction . 6

1.1 Bootloader activation . 7

2 Peripheral settings . 12

2.1 USART/UARTs settings . 12

2.1.1 LINUART/UARTs in “reply” mode settings . 13

2.2 SPI settings . 13

2.3 CAN settings . 14

3 Bootloader command set . 16

3.1 Get command . 17

3.1.1 Get command via USART/LINUART/UART1/ UART2/UART3 17

3.1.2 Get command via SPI . 19

3.1.3 Get command via CAN . 21

3.2 Read memory command . 23

3.2.1 Read memory command via USART/LINUART/UART1/2/3 23

3.2.2 Read memory command via SPI . 25

3.2.3 Read memory command via CAN . 28

3.3 Erase memory command . 29

3.3.1 Erase memory command via USART/LINUART/UART1/2/3 30

3.3.2 Erase memory command via SPI . 32

3.3.3 Erase memory command via CAN . 34

3.4 Write memory command . 36

3.4.1 Write memory command via USART/LINUART/UART1/2/3 37

3.4.2 Write memory command via SPI . 39

3.4.3 Write memory command via CAN . 42

3.5 Speed command . 44

3.5.1 Speed command via CAN . 44

3.6 Go command . 46

3.6.1 Go command via USART/LINUART/UART1/UART2/UART3 46

3.6.2 Go command via SPI . 48

3.6.3 Go command via CAN . 50

3.7 Sector codes . 51

DocID14798 Rev 10 3/75

UM0560 Contents

3

3.8 Software model (STM8AF, STM8AL, STM8L and STM8S Series) 58

3.8.1 RAM erase/write routines . 58

4 Error management . 60

5 Programming time . 61

Appendix A How to upgrade ROP protected device . 62

A.1 Rules for upgrading ROP protected devices . 62

Appendix B Bootloader entry points . 63

Appendix C SPI peripheral timing options. 65

C.1 SPI with busy state checking. 65

C.2 Modified erase/write RAM routines . 65

Appendix D PC software support . 66

Appendix E Bootloader UART limitation . 67

E.1 Description . 67

E.1.1 UART automatic baudrate calculation . 67

E.1.2 Description of UART limitation . 67

E.2 Workaround for UART limitation . 68

Appendix F Limitations and improvements versus bootloader versions 69

Revision history . 72

List of tables UM0560

4/75 DocID14798 Rev 10

List of tables

Table 1. STM8 groups featuring a bootloader . 6
Table 2. STM8 groups without bootloader . 7
Table 3. Bootloader versions for which bootloader activation flowchart is valid 7
Table 4. Initial checking . 11
Table 5. Serial interfaces associated with STM8 devices. 12
Table 6. Bootloader commands . 16
Table 7. Bootloader codes . 16
Table 8. Examples of delay . 39
Table 9. STM8 sector codes. 51
Table 10. Error table . 60
Table 11. USART/LINUART/UART1/UART2/UART3 programming times . 61
Table 12. SPI programming time . 61
Table 13. CAN programming time . 61
Table 14. Bootloader entry points . 63
Table 15. Description of limitation, improvements and added features . 69
Table 16. Document revision history . 72

DocID14798 Rev 10 5/75

UM0560 List of figures

5

List of figures

Figure 1. Bootloader activation flowchart . 9
Figure 2. CAN frame . 14
Figure 3. Get command via USART/LINUART/UART1/UART2/UART3 - host side 17
Figure 4. Get command via USART/LINUART/UART1/UART2/UART3 - device side. 18
Figure 5. Get command via SPI - host side . 19
Figure 6. Get command via SPI - device side . 20
Figure 7. Get command via CAN - host side . 21
Figure 8. Get command via CAN - device side . 22
Figure 9. Read memory command via USART/LINUART/UART1/UART2/UART3 - host side 23
Figure 10. Read memory command via USART/LINUART/UART1/UART2/UART3 - device side . . . 24
Figure 11. Read memory command via SPI - host side . 25
Figure 12. Read memory command via SPI - device side . 27
Figure 13. Read memory command via CAN - host side. 28
Figure 14. Read memory command via CAN - device side . 28
Figure 15. Erase memory command via USART/LINUART/UART1/2/3 - host side 30
Figure 16. Erase memory command via USART/LINUART/UART1/2/3 - device side. 31
Figure 17. Erase memory command via SPI - host side . 32
Figure 18. Erase memory command via SPI - device side . 33
Figure 19. Erase memory command via CAN - host side . 34
Figure 20. Erase memory command via CAN - device side . 35
Figure 21. Write memory command via USART/LINUART/UART1/UART2/UART3 - host side 37
Figure 22. Write memory command via USART/LINUART/UART1/2/3 - device side 38
Figure 23. Write memory command via SPI - host side. 39
Figure 24. Write memory command via SPI - device side . 41
Figure 25. Write memory command via CAN - host side . 42
Figure 26. Write memory command via CAN - device side . 43
Figure 27. Speed command via CAN - host side. 44
Figure 28. Speed command via CAN - device side . 45
Figure 29. Go command via USART/LINUART/UART1/UART2/UART3 - host side 46
Figure 30. Go command via USART/LINUART/UART1/UART2/UART3 - device side 47
Figure 31. Go command via SPI - host side . 48
Figure 32. Go command via SPI - device side. 49
Figure 33. Go command via CAN - host side . 50
Figure 34. Go command via CAN - device side . 50
Figure 35. Delay elimination in modified RAM routines . 65
Figure 36. "Flash loader demonstrator" software. 66

Bootloader introduction UM0560

6/75 DocID14798 Rev 10

1 Bootloader introduction

The main task of the bootloader is to download the application program into the internal
memories through the integrated peripherals (UARTs, SPI, or CAN) without using the SWIM
protocol and dedicated hardware. Data are provided by any device (host) that is capable of
sending information through one of the above-mentioned serial interfaces.

The bootloader permits downloading of application software into the device memories,
including RAM, program and data memory, using standard serial interfaces. It is a
complementary solution to programming via the SWIM debugging interface.

The bootloader code is stored in the internal boot ROM memory. After a reset, the
bootloader code checks whether the program memory is virgin or whether a specific option
byte is set allowing code modifications.

If these conditions are not fulfilled, the bootloader resumes and the user application is
started.

In case of a successful check the bootloader is executed.

When the bootloader procedure starts, the main tasks are:

• Polling all supported serial interfaces to check which peripheral is used

• Programming code, data, option bytes and/or vector tables at the address(es) received
from the host.

Each STM8 device embeds a specific bootloader code which is common to a whole group
of STM8 devices. The correspondence between STM8 groups and STM8 part numbers is
given in Table 1.These STM8 groups are used all over this user manual.

Table 1. STM8 groups featuring a bootloader

STM8 group STM8 part numbers

STM8AF and STM8S Series
high density

STM8AF52xx, STM8AF6269/8x/Ax,
STM8AF51xx, STM8AF6169/7x/8x/9x/Ax,
STM8S20xxx, STM8S007xx

STM8AF and STM8S Series
medium density

STM8AF622x/4x, STM8AF6266/68,
STM8AF612x/4x, STM8AF6166/68,
STM8S105xx, STM8S005xx

STM8L and STM8AL Series
high/medium+ density

STM8L15xx8, STM8L15xR6, STM8L16xx8,
STM8L052R8, STM8AL318x, STM8AL3L8x,
STM8AL31E8x, STM8AL3LE8x

STM8L and STM8AL Series
medium density

STM8L15xC4, STM8L15xK4, STM8L15xG4,
STM8L15xC6, STM8L15xK6, STM8L15xG6,
STM8L052C6, STM8AL313x, STM8AL314x,
STM8AL316x, STM8AL3L4x, STM8AL3L6x

STM8L Series
low density

STM8L15xC2, STM8L15xK2, STM8L15xG2,
STM8L15xC3, STM8L15xK3, STM8L15xG3,
STM8Lx151F3, STM8L050J3, STM8L051F3

DocID14798 Rev 10 7/75

UM0560 Bootloader introduction

74

Table 2 gives the list of STM8 devices without embedded bootloader (no ROM bootloader is
implemented inside the microcontroller). When using these devices, the user has to write
his own bootloader code and save it in the UBC program area (refer to STM8S, STM8AF,
STM8L, STM8AL and STM8T Series reference manuals for information on the UBC area).

1.1 Bootloader activation

The STM8 hardware reset vector is located at the beginning of the boot ROM (0x00 6000),
while the other interrupt vectors are in the Flash program memory starting at address
0x00 8004.

The device executes the boot ROM (jumps inside the boot ROM area) and after checking
certain address locations (see Table 4: Initial checking on page 11), it starts to execute the
bootloader or the user code defined by the reset vector (0x00 8000).

The bootloader activation flowchart is described in Figure 1: Bootloader activation flowchart.
In previous bootloader versions, a return to the “wait for SYNCHR” state (see dashed line in
Figure 1) was performed when the “Flash virgin” test was positive. In newer versions, it has
been replaced by a software (SW) reset to prevent the customer firmware from remaining in
a infinite loop (e.g. due to EMC disturbance). This bootloader modification is referred to as
"EMC lockup protection" in Table 15. Table 3 lists the bootloader versions for which the
dashed line was replaced by a SW reset.

The bootloader version number of a given device is obtained by the “Get command” (see
Section 3.1: Get command). The bootloader version is represented by a two-digit
binary-coded decimal (BCD) number (with a decimal point between the two digits) which is
coded into one byte in the “Get command” result. For example, 0x21 version byte is
bootloader version 2.1.

Table 2. STM8 groups without bootloader

STM8 group STM8 part numbers

STM8AF and STM8S Series
low density

STM8AF621x/2x, STM8Sx03xx, STM8S001xx

STM8L101 line
low density

STM8L101xx, STM8L001xx

STM8T Series
ultra low-power

STM8TL5xxx

Table 3. Bootloader versions for which bootloader activation flowchart is valid

STM8 group Bootloader version

STM8AF and STM8S Series
high density

v2.2

STM8AF and STM8S Series
medium density

v1.3

STM8L and STM8AL Series
high/medium+ density

v1.0

Bootloader introduction UM0560

8/75 DocID14798 Rev 10

STM8L and STM8AL Series
medium density

v1.2

STM8L Series
low density

v1.0

Table 3. Bootloader versions for which bootloader activation flowchart is valid

STM8 group Bootloader version

DocID14798 Rev 10 9/75

UM0560 Bootloader introduction

74

Figure 1. Bootloader activation flowchart

1. See Flowchart description on page 10 for explanation of points 1 to 8.

2. See Table 4: Initial checking.

3. Dotted routines are loaded in RAM by the host. They are removed by the go command before jumping to the Flash program
memory to execute an application.

4. Virgin Flash memory is tested according to the contents of address 0x8000. If [0x8000] == 0x82 or 0xAC, then the Flash
memory is not virgin.

Bootloader introduction UM0560

10/75 DocID14798 Rev 10

Flowchart description

1. Disable all interrupt sources.

2. The host can start the bootloader process according to checks shown in Table 4 (in
keeping with the content of the first Flash program memory location (0x00 8000) and
“bootloader enable” option bytes). The host checks the following bootloader start
conditions:

– Condition 1: the host checks if the device memory is empty by inspecting the
content of address 0x00 8000 (reset vector). If the content is not equal to 0x82 or
0xAC, the device is recognized as being empty and the bootloader remains active
and waits for host commands without timeouts.

– Condition 2: the host checks if the bootloader option bytes (two bytes) are set to
enable the bootloader or not. The bootloader is enabled with a value of 0x55AA
and disabled by all other values (see the device datasheets for the bootloader
option byte locations). If the option bytes are enabled, the bootloader remains
active and waits for host commands with a 1-second timeout. If the host does not
send a command within this timeout, the bootloader jumps directly to the
application user vector (jump to address 0x00 8000).

– Condition 3: if the option bytes disable the bootloader (by a value different from
0x55AA), the bootloader jumps directly to the application user vector (jump to
address 0x00 8000).

The above checking process is summarized in Table 4.

3. When readout protection (ROP) is active, the Flash program memory is readout
protected. In this case, the bootloader stops and the user application starts. If ROP is
inactive, the bootloader continues to be executed (see Appendix A: How to upgrade
ROP protected device).

4. The CAN peripheral can only be used if an external clock (8 MHz, 16 MHz, or 24 MHz)
is present. It is initialized at 125 Kbit/s. The UARTs and SPI peripherals do not require
an external clock. There is a 6 ms waiting time for HSE crystal stabilization.

5. Set the high speed internal RC oscillator (HSI) to 16 MHz and initialize the UARTs
receiver pins in input pull-up mode in the GPIO registers. Initialize the SPI in slave
mode. Then, wait 4 ms for I/O pin voltage level stabilization. It is recommended that the
host waits 10 ms from the STM8 reset before sending the SYNCHR byte/message.
This is the time needed for bootloader initialization.

6. Interface polling: The bootloader polls all peripherals waiting for a synchronization
byte/message (SYNCHR = 0x7F) within a timeout of 1 second. If a timeout occurs,
either the Flash program memory is virgin in which case it waits for a synchronization
byte/message in an infinite loop through a software reset, or the Flash program
memory is not virgin and the bootloader restores the registers’ reset status and jumps
to the memory address given by the reset vector (located at 0x00 8000). For the
bootloader versions listed in Table 3, a software reset is generated after a timeout has
elapsed, in case the Flash program memory is empty (this is because it is safer to stay
in an infinite loop if there is a hardware chip error).

Note: When synchronization fails (the bootloader receives a byte/message different to
SYNCHR = 0x7F), two different situations can be distinguished according to the peripheral:

With the UART peripherals, a device reset or power-down is necessary before
synchronization can be tried again. Refer to Appendix E: Bootloader UART limitation

With the CAN or SPI peripheral, the user can continue to poll the interfaces until a
synchronization or a timeout occurs.

DocID14798 Rev 10 11/75

UM0560 Bootloader introduction

74

7. If the synchronization message is received by the UARTs, the bootloader automatically
detects the baud rate, initializes the UART and goes to step 8 below. If the
synchronization message is received by the CAN or SPI, the bootloader goes directly
to step 8 below.

Note: Once one of the available interfaces receives the synchronization message, all
others are disabled.

8. Waiting for commands: Commands are checked in an infinite loop and executed. To
exit from the bootloader, the host has to send a ‘GO’ command. When this is done, the
bootloader removes the EM and WM routines from the RAM memory and jumps to the
address selected by the host.

Note: To be able to write/erase data in Flash and EEPROM the host must write into RAM
executable routines for writing and erasing. Those routines (*.s19 files) are provided with
the bootloader. Host must upload those routines at address 0xA0. See section 3.8.1: RAM
erase/write routines for more information.

Note: After interface initialization, the ROP bit is checked to avoid non-authorized reading of the
Flash program memory and data EEPROM.

Table 4. Initial checking

Check order Condition checked
Actual Flash program memory status

-> next action

1st [0x00 8000] <>
(0x82 or 0xAC)

Flash program memory virgin.
-> continue with bootloader

2nd [BL_OPT] == 0x55AA (1)

1. See device datasheet for the [BL_OPT] location in the option byte area memory map.

Flash program memory already written,
bootloader enabled by option bytes.

-> continue with bootloader

3rd ROP (readout protection) is active
Device protected by ROP.

-> jump to Flash program memory reset vector

Peripheral settings UM0560

12/75 DocID14798 Rev 10

2 Peripheral settings

This section describes the hardware settings of the STM8 communication peripherals:

• UARTs/LINUART

• SPI

• CAN

Note: During bootloading only one peripheral (first addressed) is enabled. All others are disabled.

2.1 USART/UARTs settings

This peripheral supports asynchronous serial communication. The USART/UARTs settings
are:

• Data frame: 1 start bit, 8 data bit, 1 parity bit set to even, 1 stop bit

• Baud rate: The baud rate is automatically detected by the bootloader. When the user
sends the synchronization byte, 0x7F, the bootloader automatically detects the baud
rate and sets the USART/UARTs to the same baud rate. Maximum baud rate = 1 Mbps
(115200 baud for STM8L/AL-high/medium+ density); minimum baud rate = 4800 bps.

To perform automatic speed detection, the RxD line must be stable in the application board
(internal pull-up is enabled on the RxD line by the bootloader).

Pin settings:

• While bootloader is waiting for synchronization byte (SYNCH = 0x7F), RxD pins are set
to input mode with pull-up.

• If bootloader is activated by USART/UART then TxD pins are set to push-pull mode.

• If bootloader is not activated (no SYNCH byte received within 1 second timeout) then
all USART/UART pins are set to default reset state.

• If bootloader is activated by another interface (except USART/UART) then RxD pins
remain in input mode with pull-up.

Table 5. Serial interfaces associated with STM8 devices(1)

1. The above table reflects only current bootloader versions and device states.

STM8 groups Serial interface

STM8AF Series - high density USART, LINUART (in “reply” mode), CAN

STM8AF Series - medium density LINUART (in “reply” mode), SPI

STM8S Series - high density UART1, UART3 (in “reply” mode), CAN

STM8S Series - medium density UART2 (in “reply” mode), SPI

STM8L Series - low density UART, SPI

STM8L and STM8AL Series - medium density UART

STM8L and STM8AL Series
high/medium+ density

UART1, UART2, UART3 (in “reply” mode), SPI1,
SPI2

DocID14798 Rev 10 13/75

UM0560 Peripheral settings

74

2.1.1 LINUART/UARTs in “reply” mode settings

Settings are:

• Data frame: 1 start bit, 8 data bit, no parity bit, 1 stop bit

• Baud rate: The baud rate is automatically detected by the bootloader. When the user
sends the synchronization byte 0x7F, the bootloader automatically detects the baud
rate and sets the UARTs to the same baud rate. Maximum baud rate = 550
kbps(115200 baud for STM8L/AL-high/medium+ density); minimum baud rate = 4800
bps.

To perform automatic speed detection, the RxD line must be stable in the application board
(internal pull-up is enabled on the RxD line by the bootloader).

Reply mode

The host must reply to all the bytes sent from the bootloader. If TxD and RxD lines share the
same physical medium (for example, 1-wire communication), then host replies are not
necessary since RxD and TxD pins coincide.

Pin settings:

• While bootloader is waiting for synchronization byte (SYNCH = 0x7F), RxD pins are set
to input mode with pull-up.

• If bootloader is activated by LINUART/UART then TxD pins are set to push-pull mode.

• If bootloader is not activated (no SYNCH byte received within 1 second timeout) then
all LINUART/UART pins are set to default reset state.

• If bootloader is activated by another interface (except LINUART/UART) then RxD pins
remain in input mode with pull-up.

2.2 SPI settings

The SPI settings are:

• 8 data bit, MSB first

• Bit rate: Set by the host which acts as a master

• Peripheral set in slave mode with software management of NSS

• Data polarity: CPOL = 0 (SCK to 0 when idle), CPHA = 0 (the first clock transition is the
first data capture edge).

Before sending a ‘token’ byte, the host has to wait for a delay of a specified period of time. If
this period is not quantified, it is equal to 6 µs.

The SPI peripheral is accessible via SPI_SCK, SPI_MOSI and SPI_MISO pins, with the
following settings:

• While bootloader is waiting for synchronization byte (SYNCH = 0x7F) SPI_MISO pins
are set to push-pull mode.

• If bootloader is not activated (no SYNCH byte received within 1 second timeout) then
all SPI_MISO pins are set to default reset state.

• If bootloader is activated by another interface (except SPI) then SPI_MISO pins remain
in push-pull mode.

Peripheral settings UM0560

14/75 DocID14798 Rev 10

2.3 CAN settings

To address additional devices on the same bus, the CAN protocol provides a standard
identifier field (11-bit) and an optional extended identifier field (18-bit) in the frame.

Figure 2 shows the CAN frame that uses the standard identifier only.

Figure 2. CAN frame

The CAN settings are as follows:

• Standard identifier (not extended)

• Bit rate

By default, it is 125 Kbit/s. The runtime can be changed via the speed command to
achieve a maximum bit rate of 1 Mbit/s.

The transmit settings (from the STM8 to the host) are:

• Tx mailbox0: On

• Tx mailbox1 and Tx mailbox2: Off

• Tx identifier: 0x02

• Outgoing messages contain 1 data byte

The receive settings (from the host to the STM8) are:

• The synchronization byte, 0x7F, is in the RX identifier and not in the data field.

• The RX identifier depends on the command (0x00, 0x03, 0x11, 0x21, 0x31, 0x43).

• Error checking: If the error field (bit [6:4] in the CESR register) is different from 000b,
the message is discarded and a NACK is sent to the host.

• In FIFO overrun condition, the message is discarded and a NACK is sent to the host.

Incoming messages can contain from 1 to 8 data bytes.

DocID14798 Rev 10 15/75

UM0560 Peripheral settings

74

The CAN peripheral is accessible via CAN_TX and CAN_RX pins, with the following
settings:

• While bootloader is waiting for synchronization byte (SYNCH = 0x7F), CAN_TX pin is
set to push-pull mode.

• If bootloader is not activated (no SYNCH byte received within 1 second timeout) then
CAN_TX pin is set to default reset state.

• If bootloader is activated by another interface (except CAN) then CAN_TX pin remains
in push-pull mode.

Bootloader command set UM0560

16/75 DocID14798 Rev 10

3 Bootloader command set

The commands supported by the bootloader are listed in Table 6 below.

Table 7. Bootloader codes

When the bootloader receives a command via the UARTs, CAN or SPI peripherals, the
general protocol is as follows:

1. The bootloader sends an ACK byte (0x79) to the host and waits for an address and for
a checksum byte, both of which are checked when received.

2. When the address is valid and the checksum is correct, the bootloader transmits an
ACK byte (0x79), otherwise it transmits a NACK byte (0x1F) and aborts the command.
The bootloader waits for the number of bytes to be transmitted (N bytes) and for its
complemented byte (checksum).

– If the checksum is correct, it carries out the command, starting from the received
address.

– If the checksum is incorrect, a NACK (0x1F) byte is sent before aborting the
command.

The bootloader protocols via the UARTs, and SPI are identical on the device side, but differ
regarding the host. A token byte is needed when sending each byte to the host via SPI (see
Figure 5, Figure 11, Figure 17, Figure 23, and Figure 31).

The bootloader protocol via CAN differs from all other peripherals.

Table 6. Bootloader commands

Command Command code Command description

Get 0x00
Gets the version and the allowed commands supported by the current version of
the bootloader

Read memory 0x11 Reads up to 256 bytes of memory starting from an address specified by the host

Erase memory 0x43 Erases from one to all of the Flash program memory/data EEPROM sectors

Write memory 0x31
Writes up to 128 bytes to RAM or the Flash program memory/data EEPROM
starting from an address specified by the host

Speed 0x03 Allows the baud rate for CAN runtime to be changed

Go 0x21 Jumps to an address specified by the host to execute a loaded code

Name Code Description

SYNCH 0x7F Synchronization byte

ACK 0x79 Acknowledge

NACK 0x1F No acknowledge

Token 0xXX
Any byte which the host sends to the bootloader via the SPI interface to receive
an answer from the bootloader (it is necessary to put data into the SPI when it is
needed to receive data - SPI clock generation) The usual token value is 0x00.

BUSY 0xAA Busy flag status

DocID14798 Rev 10 17/75

UM0560 Bootloader command set

74

3.1 Get command

The get command allows the host to get the version of the bootloader and the supported
commands. When the bootloader receives the get command, it transmits the bootloader
version and the supported command codes to the host.

3.1.1 Get command via USART/LINUART/UART1/ UART2/UART3

Figure 3. Get command via USART/LINUART/UART1/UART2/UART3 - host side

The host sends the bytes as follows

Byte 1: 0x00 - Command ID

Byte 2: 0xFF - Complement

Bootloader command set UM0560

18/75 DocID14798 Rev 10

Figure 4. Get command via USART/LINUART/UART1/UART2/UART3 - device side

The STM8 sends the bytes as follows

Byte 1: ACK (after the host has sent the command)

Byte 2: N = 5 = the number of bytes to be sent -1 (1 <= N +1 <= 256)

Byte 3: Bootloader version (0 < version <= 255)

Byte 4: 0x00 - Get command

Byte 5: 0x11 - Read memory command

Byte 6: 0x21 - Go command

Byte 7: 0x31 - Write memory command

Byte 8: 0x43 - Erase memory command

Byte 9: ACK

DocID14798 Rev 10 19/75

UM0560 Bootloader command set

74

3.1.2 Get command via SPI

Figure 5. Get command via SPI - host side

The host sends the bytes as follows

Byte 1: 0x00 - Command ID

Byte 2: 0xFF - Complement

Byte 3 (token): 0xXY; host waits for ACK or NACK

Byte 4 (token): 0xXY; host waits for 0x05

...

Byte 11 (token): 0x XY; host waits for ACK or NACK.

Bootloader command set UM0560

20/75 DocID14798 Rev 10

Figure 6. Get command via SPI - device side

The STM8 sends the bytes as follows

Byte 1: ACK

Byte 2: N = 5 = the number of bytes to be sent -1 (1 <= N +1 <= 256)

Byte 3: Bootloader version (0 < version <= 255)

Byte 4: 0x00 - Get command

Byte 5: 0x11 - Read memory command

Byte 6: 0x21 - Go command

Byte 7: 0x31 - Write memory command

Byte 8: 0x43 - Erase memory command

Byte 9: ACK

DocID14798 Rev 10 21/75

UM0560 Bootloader command set

74

3.1.3 Get command via CAN

Figure 7. Get command via CAN - host side

Bootloader command set UM0560

22/75 DocID14798 Rev 10

The host sends the messages as follows

Command message: Std ID = 0x00, data length code (DLC) = ‘not important’.

Figure 8. Get command via CAN - device side

The STM8 sends the messages as follows

Message 1: Std ID = 0x02, DLC = 1, data = ACK

Message 2: Std ID = 0x02, DLC = 1 data = N = 6 = the number of bytes to be sent -1
(1 ≤ N + 1 ≤ 256)

Message 3: Std ID = 0x02, DLC = 1, data = bootloader version (0 < version <= 255)

Message 4: Std ID = 0x02, DLC = 1, data = 0x00 - Get command

Message 5: Std ID = 0x02, DLC = 1, data = 0x03 - Speed command

Message 6: Std ID = 0x02, DLC = 1, data = 0x11 - Read memory command

Message 7: Std ID= 0x02, DLC = 1, data = 0x21 - Go command

Message 8: Std ID = 0x02, DLC = 1, data = 0x31 - Write memory command

Message 9: Std ID= 0x02, DLC = 1, data = 0x43 - Erase memory command

Message 10: Std ID = 0x02, DLC = 1, data = ACK

DocID14798 Rev 10 23/75

UM0560 Bootloader command set

74

3.2 Read memory command

The read memory command reads the memory (RAM, Flash program memory/data
EEPROM or registers). When the bootloader receives the read memory command, it
transmits the needed data ((N + 1) bytes) to the host, starting from the received address.

3.2.1 Read memory command via USART/LINUART/UART1/2/3

Figure 9. Read memory command via USART/LINUART/UART1/UART2/UART3 - host
side

1. The valid addresses are RAM, Flash program memory/data EEPROM, and register addresses (see
product datasheets).
If the bootloader receives an invalid address, an error occurs (see Table 10: Error table on page 60).

The host sends the bytes to the STM8 as follows

Bytes 1-2: 0x11+0xEE

Bytes 3-6: The start address (32-bit address)
Byte 3 = MSB
Byte 6 = LSB

Byte 7: Checksum = XOR (byte 3, byte 4, byte 5, byte 6)

Bootloader command set UM0560

24/75 DocID14798 Rev 10

Figure 10. Read memory command via USART/LINUART/UART1/UART2/UART3 -
device side

Byte 8: The number of bytes to be read -1 (0 <= N <= 255)

Byte 9: Checksum (complement of byte 8)

DocID14798 Rev 10 25/75

UM0560 Bootloader command set

74

3.2.2 Read memory command via SPI

Figure 11. Read memory command via SPI - host side

1. Valid addresses are RAM, Flash program memory/data EEPROM, and register addresses (see product
datasheets). If the bootloader receives an invalid address, an error occurs (see Table 10 on page 60).

Bootloader command set UM0560

26/75 DocID14798 Rev 10

The host sends the bytes to the STM8 as follows

Byte 1: 0x11 - Command ID

Byte 2: 0xEE - Complement

Byte 3 (token): 0xXY; host waits for ACK or NACK

Bytes 4 to 7: The start address (32-bit address)
Byte 4 = MSB
Byte 7 = LSB

Byte 8: Checksum = XOR (byte 4, byte 5, byte 6, byte 7)

Byte 9 (token): 0xXY; host waits for ACK or NACK

Byte 10: The number of bytes to be read -1 (0 <= N <= 255)

Byte 11: Checksum (complement of byte 10)

Byte 12 (token): 0xXY; host waits for the 1st data byte

Byte 12+N (token): 0xXY; host waits for the N+1th data byte

DocID14798 Rev 10 27/75

UM0560 Bootloader command set

74

Figure 12. Read memory command via SPI - device side

Bootloader command set UM0560

28/75 DocID14798 Rev 10

3.2.3 Read memory command via CAN

The CAN message sent by the host is as follows:

• The ID contains the command type (0x11)

• The data field contains a destination address (4 bytes, byte 1 is the MSB and byte 4 is
LSB of the address) and the ‘number of bytes’ (N) to be read.

Figure 13. Read memory command via CAN - host side

1. Valid addresses are RAM, Flash program memory/data EEPROM, and register addresses (see product
datasheets). If the bootloader receives an invalid address, an error occurs (see Table 10 on page 60).

The host sends the command messages as follows

Std ID = 0x11, DLC = 0x05, data = MSB, 0xXX, 0xYY, LSB, N (where 0 < N ≤ 255).

Figure 14. Read memory command via CAN - device side

DocID14798 Rev 10 29/75

UM0560 Bootloader command set

74

The STM8 sends the messages as follows

ACK message: Std ID = 0x02, DLC = 1, data = ACK

Data message 1: Std ID = 0x02, DLC = 1, data = 0xXX

Data message 2: Std ID = 0x02, DLC = 1, data = 0xXX
…

Data message (N+1): Std ID = 0x02, DLC = 1, data = 0xXX

Note: The bootloader sends as many data messages as bytes which can be read.

3.3 Erase memory command

The erase memory command allows the host to erase sectors of the Flash program
memory/data EEPROM.

The bootloader receives the erase command message, when the ID contains the command
type (0x43) and the data field contains the sectors to be erased (see Table 9: STM8 sector
codes on page 51). A sector size is 1 Kbyte, therefore, the granularity with the erase
command is eight blocks (1 block = 128 bytes). If the host wants to erase one byte only, the
write command (write 0x00) can be used.

Erase memory command description

1. The bootloader receives one byte which contains the number (N) of sectors to be
erased. N is device-dependent.

2. Then, the bootloader receives (N + 1) bytes, where each byte contains a sector code
(see Table 9: STM8 sector codes on page 51).

Bootloader command set UM0560

30/75 DocID14798 Rev 10

3.3.1 Erase memory command via USART/LINUART/UART1/2/3

Figure 15. Erase memory command via USART/LINUART/UART1/2/3 - host side

1. “Total erase” erases program and data EEPROM. The bootloader erases the memory sector by sector.

2. A sector is 1 Kbyte for all devices. Therefore, the granularity of the erase command is 8 blocks. To erase
one byte, the write command can be used by writing 0x00.

Warning: If the host sends an erase command that includes correct
sector code and one or more forbidden sector codes (see
Table 9: STM8 sector codes), the command fails.

The host sends the bytes as follows

Note: N is product-dependent.
M = (size of the Flash program memory in Kbyte) + (size of data EEPROM in Kbyte) -1.
Example STM8S Series-high density:

Byte 1: 0x43 - Command ID

Byte 2: 0xBC - Complement

Byte 3: 0xFF or number of sectors to be erased (0 <= N <= M);
if N > M, a cmd_error occurs in the bootloader, after which the bootloader receives
N + 1 data bytes and the checksum (i.e. the host completes the command).

DocID14798 Rev 10 31/75

UM0560 Bootloader command set

74

M = 129, because Flash program memory is 128 Kbytes and data EEPROM is 2 Kbytes
(128 + 2 -1).
Example STM8S Series-medium density:
M = 32, because Flash program memory is 32 Kbytes and data EEPROM is 1 Kbyte
(32 + 1 - 1).
Byte 4 or N+1 bytes: 0x00 or (N+1 bytes and then checksum: XOR(N,[N+1 data bytes])).
Example STM8L and STM8AL Series-low density:
M = 8, because Flash program memory is 8 Kbytes and data EEPROM (256 bytes) is in
next starting 1 Kbyte (8 + 1 - 1).
Byte 4 or N+1 bytes: 0x00 or (N+1 bytes and then checksum: XOR(N,[N+1 data bytes])).

Figure 16. Erase memory command via USART/LINUART/UART1/2/3 - device side

1. ‘Erase the corresponding sectors’ routine is performed in RAM. The user therefore has to download the
erase routine in RAM before sending an erase command. Note that for some bootloader versions this is not
necessary (see 3.8.1: RAM erase/write routines).

Bootloader command set UM0560

32/75 DocID14798 Rev 10

3.3.2 Erase memory command via SPI

Figure 17. Erase memory command via SPI - host side

1. When using the erase command via SPI, it is necessary to wait for a brief time interval (see ‘delay’ in
Figure 17 above) before sending the last token byte. This delay interval depends on the number of sectors
(N) to be erased. Delay = 30 * (N + 1)[ms], where 0 <= N <= 32. Ν = 32 in the case of total erase. See also
Appendix C: SPI peripheral timing options.

The host sends the bytes as follows

Byte 1: 0x43 - Command ID

Byte 2: 0xBC - Complement

Byte 3 (token): 0xXY; host waits for ACK or NACK

Byte 4: 0xFF or number of sectors to be erased (0 ≤ N ≤ 32)
If N > 32 a ‘cmd_error’ occurs.

Byte 5 or N+1 bytes: 0x00 or (N+1 bytes and then checksum:
XOR(N,[N+1 data bytes])

Last byte (token): 0xXY; host waits for ACK or NACK.

DocID14798 Rev 10 33/75

UM0560 Bootloader command set

74

Figure 18. Erase memory command via SPI - device side

1. ‘Erase the corresponding sectors’ routine is performed in RAM. The user therefore has to download the
erase routine in RAM before sending an erase command. Note that for some bootloader versions this is not
necessary (see 3.8.1: RAM erase/write routines).

Bootloader command set UM0560

34/75 DocID14798 Rev 10

3.3.3 Erase memory command via CAN

Figure 19. Erase memory command via CAN - host side

1. The bootloader erases the memory sector by sector.

2. A sector is 1 Kbyte for all devices. Therefore, the granularity of the erase command 8 blocks. To erase one
byte, the write command can be used by writing 0x00.

Warning: If the host sends an erase command that includes some
correct sector code and one or more forbidden sector codes
(see Table 9: STM8 sector codes), the command fails and no
block is erased.

The host sends the message as follows

Total erase message: Std ID = 0x43, DLC = 0x01, data = 0xFF.

Erase sector by sector message: Std ID = 0x43, DLC = 0x01 to 0x08, data = see Table 9:
STM8 sector codes.

DocID14798 Rev 10 35/75

UM0560 Bootloader command set

74

Figure 20. Erase memory command via CAN - device side

1. ‘Erase memory sector by sector according to data contained in the message field’ is performed in RAM.
The user therefore has to download the erase routine in RAM before sending an erase command. Note
that for some bootloader versions this is not necessary (see 3.8.1: RAM erase/write routines).

Bootloader command set UM0560

36/75 DocID14798 Rev 10

3.4 Write memory command

The write memory command allows the host to write data into any memory address (RAM,
Flash program memory/data EEPROM or registers) starting from the received address.
Incoming data are always written in RAM before being loaded in the memory locations
decided by the host. The bootloader then checks whether the host wants to write in RAM or
in the Flash program memory/data EEPROM.

The maximum length of the block to be written for the STM8 is 128 data bytes. To write the
data in the Flash program memory/data EEPROM locations, the bootloader performs two
different write operations:

1. WordWrite/FastWordWrite: Writes a byte in the Flash program memory/data EEPROM.
It is used when the number of bytes (N) sent from the host is less than 128. In this case
the bootloader performs the operation N times.

2. BlockWrite: Writes a block in the Flash program memory/data EEPROM. It is used
when the number of bytes (N) sent from the host is 128 and the destination address is
an integer module of 128. In other words, to use this operation, the block sent from the
host has to be aligned with a memory block. If not aligned, the byte write operation is
used (which is slower).

DocID14798 Rev 10 37/75

UM0560 Bootloader command set

74

3.4.1 Write memory command via USART/LINUART/UART1/2/3

Figure 21. Write memory command via USART/LINUART/UART1/UART2/UART3 - host
side

1. See product datasheets for valid addresses. If the start address is invalid, an add_error occurs (see
Table 10: Error table on page 60).

The host sends the bytes as follows

Byte 1: 0x31 - Command ID

Byte 2: 0xCE - Complement

Bytes 3-6: The start address (32-bit address)
Byte 3 = MSB
Byte 6 = LSB

Byte 7: Checksum = XOR (byte 3, byte 4, byte 5, byte 6)

Byte 8: The number of bytes to be received -1: N = 0 ... 127
If N > 127, a cmd_error occurs in the bootloader.

N+1 bytes: Max 128 data bytes

Checksum byte: XOR (N,[N+1 data bytes]).

Bootloader command set UM0560

38/75 DocID14798 Rev 10

Figure 22. Write memory command via USART/LINUART/UART1/2/3 - device side

1. ‘Write the received data to RAM from the start address’ is performed in RAM. The user therefore has to
download the write routine in RAM before sending a write command. Note that for some bootloader
versions this is not necessary (see 3.8.1: RAM erase/write routines).

DocID14798 Rev 10 39/75

UM0560 Bootloader command set

74

3.4.2 Write memory command via SPI

Figure 23. Write memory command via SPI - host side

1. Delay or poll “BUSY” flag if device supports it.

The delay is calculated according to Equation 1.

Equation 1

Where ‘n’ is the number of write cycles (number of bytes or number of blocks - see Table 8).

Table 8. Examples of delay

Write command Delay (ms)

128 bytes aligned with a memory block 8.45

128 bytes not aligned with a memory block 1082

1 byte 8.45

10 bytes 84.5

Delay 8.45 n ms[]×=

Bootloader command set UM0560

40/75 DocID14798 Rev 10

In SPI mode, if the device supports sending a "BUSY" flag during Flash/EEPROM memory
programming, the delay can be replaced by polling the device status (a set of token bytes
are sent to the device). During programming the device sends the BUSY flag (0xAA)
through SPI. When the programming is finished, the device sends an ACK/NACK answer to
indicate if the programming was correct or has failed.

Currently, such polling is allowed only for STM8AF/S-medium density devices with modified
RAM routines (see Appendix C: SPI peripheral timing options). On STM8L/AL-low density
and STM8L/AL-high/medium+ density devices, the BUSY flag is sent through the SPI
interface.

The host sends the bytes as follows

Byte 1: 0x31 - Command ID

Byte 2: 0xCE - Complement

Byte 3 (token): XY; host waits for ACK or NACK

Bytes 4 to 7: The start address (32-bit address)
Byte 4 = MSB
Byte 7 = LSB

Byte 8: Checksum = XOR (byte 4, byte 5, byte 6, and byte 7)

Byte 9 (token): XY; host waits for ACK or NACK

Byte 10: The number of data bytes to be received -1: N = 0 ... 127);
If N > 127, a cmd_error occurs in the bootloader.

N+1 bytes: Max 128 data bytes

Checksum byte: XOR (N,[N+1 data bytes])

Important: before sending the token byte, the host must wait for the
bootloader to finish writing all data into the memory. See previous delay
(or polling) description.

Last byte (token): 0xXY; host waits for ACK or NACK

DocID14798 Rev 10 41/75

UM0560 Bootloader command set

74

Figure 24. Write memory command via SPI - device side

1. ‘Write the received data to RAM from the start address’ is performed in RAM. The user therefore has to
download the write routine in RAM before sending a write command. Note that for some bootloader
versions this is not necessary (see 3.8.1: RAM erase/write routines).

Bootloader command set UM0560

42/75 DocID14798 Rev 10

3.4.3 Write memory command via CAN

Figure 25. Write memory command via CAN - host side

1. See product datasheets for valid addresses. If the bootloader receives an invalid address, an add_error
occurs (see Table 10: Error table on page 60).

The host sends the messages as follows

Command message: Std ID = 0x31, DLC = 0x05, data = MSB, 0xXX, 0xYY, LSB, N.
N = 0 ... 127, number of data bytes -1. If N > 127, a cmd_error occurs in the bootloader.

Data message_1: Std ID = 0x04, DLC_1 = 1 to 8, data = byte_11, … byte_18
Data message_2: Std ID = 0x04, DLC_2 = 1 to 8, data = byte_21, … byte_28
Data message_3: Std ID = 0x04, DLC_3 = 1 to 8, data = byte_31, … byte_38
…
Data message_M: Std ID = 0x04, DLC_M = 1 to 8, data = byte_m1, …, byte_M8

Checksum message: Std ID = 0x04, DLC = 1, data = XOR (N,[N+1 data bytes])

Note: 1. DLC_1 + DLC_2 + ... DLC_M = 128 maximum

2. The bootloader does not check the standard ID of the data and checksum messages.
Therefore, an ID from 0x00 to 0xFF can be used. It is recommended to use 0x04.

DocID14798 Rev 10 43/75

UM0560 Bootloader command set

74

Figure 26. Write memory command via CAN - device side

1. Write the received data to the Flash program memory/data EEPROM from the start address’ is performed
in RAM. The user therefore has to download the write routine in RAM before sending a write command.
Note that for some bootloader versions this is not necessary (see 3.8.1: RAM erase/write routines).

Bootloader command set UM0560

44/75 DocID14798 Rev 10

3.5 Speed command

The speed command allows the baud rate for CAN runtime to be changed. It can be used
only if the CAN is the peripheral being used.

3.5.1 Speed command via CAN

Figure 27. Speed command via CAN - host side

1. After setting the new baud rate, the bootloader sends the ACK message. Therefore, the host sets its baud
rate while waiting for the ACK.

The host sends the message as follows

Command message: Std ID = 0x03, DLC = 0x01, data = 0xXX where 0xXX assumes the
following values depending on the baud rate to be set with HSE:

• 0x01 -> baud rate = 125 kbps

• 0x02 -> baud rate = 250 kbps

• 0x03 -> baud rate = 500 kbps

• 0x04 -> baud rate = 1 Mkbps

DocID14798 Rev 10 45/75

UM0560 Bootloader command set

74

Figure 28. Speed command via CAN - device side

Bootloader command set UM0560

46/75 DocID14798 Rev 10

3.6 Go command

The go command executes the downloaded code, or any other code, by branching to an
address specified by the host.

Note: After the Go command has executed, the program and data memories are in an unlocked
state. Applications should lock program and data memories to set the default memory
protection state.

3.6.1 Go command via USART/LINUART/UART1/UART2/UART3

Figure 29. Go command via USART/LINUART/UART1/UART2/UART3 - host side

1. The valid addresses are RAM, Flash program memory/data EEPROM, and register addresses (see
product datasheets). If the bootloader receives an invalid address, an ‘add error’ occurs (see Table 10:
Error table on page 60).

The host sends the bytes as follows

Byte 1: 0x21 - Command ID

Byte 2: 0xDE - Complement

Bytes 3-6: The start address (32-bit address)
Byte 3 = MSB
Byte 6 = LSB

Byte 7: Checksum = XOR (byte 3, byte 4, byte 5, byte 6).

DocID14798 Rev 10 47/75

UM0560 Bootloader command set

74

Figure 30. Go command via USART/LINUART/UART1/UART2/UART3 - device side

Bootloader command set UM0560

48/75 DocID14798 Rev 10

3.6.2 Go command via SPI

Figure 31. Go command via SPI - host side

1. The valid addresses are RAM, Flash program memory/data EEPROM and register addresses (see product
datasheets). If the bootloader receives an invalid address, an ‘add error’ occurs (see Table 10: Error table
on page 60).

The host sends the bytes as follows

Byte 1: 0x21 - Command ID

Byte 2: 0xDE - Complement

Byte 3 (token): 0xXY; host waits for ACK or NACK

Bytes 4 to 7: The start address (32-bit address)
Byte 4 = MSB
Byte 7 = LSB

Byte 8: Checksum = XOR (byte 4, byte 5, byte 6, and byte 7)

Byte 9 (token): 0xXY; host waits for ACK or NACK.

DocID14798 Rev 10 49/75

UM0560 Bootloader command set

74

Figure 32. Go command via SPI - device side

Bootloader command set UM0560

50/75 DocID14798 Rev 10

3.6.3 Go command via CAN

Figure 33. Go command via CAN - host side

1. See product datasheets for valid addresses.

The host sends the bytes as follows

Go command message: Std ID =0x21, DLC = 0x04, data = MSB, 0xXX, 0xYY, LSB

Figure 34. Go command via CAN - device side

DocID14798 Rev 10 51/75

UM0560 Bootloader command set

74

3.7 Sector codes

Table 9. STM8 sector codes

Sector
code

Flash program memory/data EEPROM

STM8AF and
STM8S Series
high density

STM8AF and
STM8S Series

medium density

STM8L and
STM8AL Series
medium density

STM8L and
STM8AL Series
high/medium

+ density

STM8L Series
low density

0x00
0x00 8000 ->
0x00 83FF

0x00 8000 ->
0x00 83FF

0x00 8000 ->
0x00 83FF

0x00 8000 ->
0x00 83FF

0x00 8000 ->
0x00 83FF

0x01
0x00 8400 ->
0x00 87FF

0x00 8400 ->
0x00 87FF

0x00 8400 ->
0x00 87FF

0x00 8400 ->
0x00 87FF

0x00 8400 ->
0x00 87FF

0x02
0x00 8800 ->
0x00 8BFF

0x00 8800 ->
0x00 8BFF

0x00 8800 ->
0x00 8BFF

0x00 8800 ->
0x00 8BFF

0x00 8800 ->
0x00 8BFF

0x03
0x00 8C00 ->

0x00 8FFF
0x00 8C00 ->

0x00 8FFF
0x00 8C00 ->

0x00 8FFF
0x00 8C00 ->

0x00 8FFF
0x00 8C00 ->

0x00 8FFF

0x04
0x00 9000 ->
0x00 93FF

0x00 9000 ->
0x00 93FF

0x00 9000 ->
0x00 93FF

0x00 9000 ->
0x00 93FF

0x00 9000 ->
0x00 93FF

0x05
0x00 9400 ->
0x00 97FF

0x00 9400 ->
0x00 97FF

0x00 9400 ->
0x00 97FF

0x00 9400 ->
0x00 97FF

0x00 9400 ->
0x00 97FF

0x06
0x00 9800 ->
0x00 9BFF

0x00 9800 ->
0x00 9BFF

0x00 9800 ->
0x00 9BFF

0x00 9800 ->
0x00 9BFF

0x00 9800 ->
0x00 9BFF

0x07
0x00 9C00 ->

0x00 9FFF
0x00 9C00 ->

0x00 9FFF
0x00 9C00 ->

0x00 9FFF
0x00 9C00 ->

0x00 9FFF
0x00 9C00 ->

0x00 9FFF

0x08
0x00 A000 ->
0x00 A3FF

0x00 A000 ->
0x00 A3FF

0x00 A000 ->
0x00 A3FF

0x00 A000 ->
0x00 A3FF

0x00 1000 ->
0x00 10FF

0x09
0x00 A400 ->
0x00 A7FF

0x00 A400 ->
0x00 A7FF

0x00 A400 ->
0x00 A7FF

0x00 A400 ->
0x00 A7FF

-

0x0A
0x00 A800 ->
0x00 ABFF

0x00 A800 ->
0x00 ABFF

0x00 A800 ->
0x00 ABFF

0x00 A800 ->
0x00 ABFF

-

0x0B
0x00 AC00 ->

0x00 AFFF
0x00 AC00 ->

0x00 AFFF
0x00 AC00 ->

0x00 AFFF
0x00 AC00 ->

0x00 AFFF
-

0x0C
0x00 B000 ->
0x00 B3FF

0x00 B000 ->
0x00 B3FF

0x00 B000 ->
0x00 B3FF

0x00 B000 ->
0x00 B3FF

-

0D
0x00 B400 ->
0x00 B7FF

0x00 B400 ->
0x00 B7FF

0x00 B400 ->
0x00 B7FF

0x00 B400 ->
0x00 B7FF

-

0x0E
0x00 B800 ->
0x00 BBFF

0x00 B800 ->
0x00 BBFF

0x00 B800 ->
0x00 BBFF

0x00 B800 ->
0x00 BBFF

-

0x0F
0x00 BC00 ->

0x00 BFFF
0x00 BC00 ->

0x00 BFFF
0x00 BC00 ->

0x00 BFFF
0x00 BC00 ->

0x00 BFFF
-

0x10
0x00 C000 ->
0x00 C3FF

0x00 C000 ->
0x00 C3FF

0x00 C000 ->
0x00 C3FF

0x00 C000 ->
0x00 C3FF

-

0x11
0x00 C400 ->
0x00 C7FF

0x00 C400 ->
0x00 C7FF

0x00 C400 ->
0x00 C7FF

0x00 C400 ->
0x00 C7FF

-

Bootloader command set UM0560

52/75 DocID14798 Rev 10

0x12
0x00 C800 ->
0x00 CBFF

0x00 C800 ->
0x00 CBFF

0x00 C800 ->
0x00 CBFF

0x00 C800 ->
0x00 CBFF

-

0x13
0x00 CC00 ->

0x00 CFFF
0x00 CC00 ->

0x00 CFFF
0x00 CC00 ->

0x00 CFFF
0x00 CC00 ->

0x00 CFFF
-

0x14
0x00 D000 ->
0x00 D3FF

0x00 D000 ->
0x00 D3FF

0x00 D000 ->
0x00 D3FF

0x00 D000 ->
0x00 D3FF

-

0x15
0x00 D400 ->
0x00 D7FF

0x00 D400 ->
0x00 D7FF

0x00 D400 ->
0x00 D7FF

0x00 D400 ->
0x00 D7FF

-

0x16
0x00 D800 ->
0x00 DBFF

0x00 D800 ->
0x00 DBFF

0x00 D800 ->
0x00 DBFF

0x00 D800 ->
0x00 DBFF

-

0x17
0x00 DC00 ->

0x00 DFFF
0x00 DC00 ->

0x00 DFFF
0x00 DC00 ->

0x00 DFFF
0x00 DC00 ->

0x00 DFFF
-

0x18
0x00 E000 ->
0x00 E3FF

0x00 E000 ->
0x00 E3FF

0x00 E000 ->
0x00 E3FF

0x00 E000 ->
0x00 E3FF

-

0x19
0x00 E400 ->
0x00 E7FF

0x00 E400 ->
0x00 E7FF

0x00 E400 ->
0x00 E7FF

0x00 E400 ->
0x00 E7FF

-

0x1A
0x00 E800 ->
0x00 EBFF

0x00 E800 ->
0x00 EBFF

0x00 E800 ->
0x00 EBFF

0x00 E800 ->
0x00 EBFF

-

0x1B
0x00 EC00 ->

0x00 EFFF
0x00 EC00 ->

0x00 EFFF
0x00 EC00 ->

0x00 EFFF
0x00 EC00 ->

0x00 EFFF
-

0x1C
0x00 F000 ->
0x00 F3FF

0x00 F000 ->
0x00 F3FF

0x00 F000 ->
0x00 F3FF

0x00 F000 ->
0x00 F3FF

-

0x1D
0x00 F400 ->
0x00 F7FF

0x00 F400 ->
0x00 F7FF

0x00 F400 ->
0x00 F7FF

0x00 F400 ->
0x00 F7FF

-

0x1E
0x00 F800 ->
0x00 FBFF

0x00 F800 ->
0x00 FBFF

0x00 F800 ->
0x00 FBFF

0x00 F800 ->
0x00 FBFF

-

0x1F
0x00 FC00 ->

0x00 FFFF
0x00 FC00 ->

0x00 FFFF
0x00 FC00 ->

0x00 FFFF
0x00 FC00 ->

0x00 FFFF
-

0x20
0x01 0000 ->
0x01 03FF

0x00 4000 ->
0x00 43FF

0x00 1000 ->
0x00 13FF

0x01 0000 ->
0x01 03FF

-

0x21
0x01 0400 ->

0x1 07FF
- -

0x01 0400 ->
0x1 07FF

-

0x22
0x01 0800 ->
0x01 0BFF

- -
0x01 0800 ->
0x01 0BFF

-

0x23
0x01 0C00 ->

0x01 0FFF
- -

0x01 0C00 ->
0x01 0FFF

-

0x24
0x01 1000 ->
0x01 13FF

- -
0x01 1000 ->
0x01 13FF

-

Table 9. STM8 sector codes (continued)

Sector
code

Flash program memory/data EEPROM

STM8AF and
STM8S Series
high density

STM8AF and
STM8S Series

medium density

STM8L and
STM8AL Series
medium density

STM8L and
STM8AL Series
high/medium

+ density

STM8L Series
low density

DocID14798 Rev 10 53/75

UM0560 Bootloader command set

74

0x25
0x01 1400 ->
0x01 17FF

- -
0x01 1400 ->
0x01 17FF

-

0x26
0x01 1800 ->
0x01 1BFF

- -
0x01 1800 ->
0x01 1BFF

-

0x27
0x01 1C00 ->

0x01 1FFF
- -

0x01 1C00 ->
0x01 1FFF

-

0x28
0x01 2000 ->
0x01 23FF

- -
0x01 2000 ->
0x01 23FF

-

0x29
0x01 2400 ->
0x01 27FF

- -
0x01 2400 ->
0x01 27FF

-

0x2A
0x01 2800 ->
0x01 2BFF

- -
0x01 2800 ->
0x01 2BFF

-

0x2B
0x01 2C00 ->

0x01 2FFF
- -

0x01 2C00 ->
0x01 2FFF

-

0x2C
0x01 3000 ->
0x01 33FF

- -
0x01 3000 ->
0x01 33FF

-

0x2D
0x01 3400 ->
0x01 37FF

- -
0x01 3400 ->
0x01 37FF

-

0x2E
0x01 3800 ->
0x01 3BFF

- -
0x01 3800 ->
0x01 3BFF

-

0x2F
0x01 3C00 ->

0x01 3FFF
- -

0x01 3C00 ->
0x01 3FFF

-

0x30
0x01 4000 ->
0x01 43FF

- -
0x01 4000 ->
0x01 43FF

-

0x31
0x01 4400 ->
0x01 47FF

- -
0x01 4400 ->
0x01 47FF

-

0x32
0x01 4800 ->
0x01 4BFF

- -
0x01 4800 ->
0x01 4BFF

-

0x33
0x01 4C00 ->

0x01 4FFF
- -

0x01 4C00 ->
0x01 4FFF

-

0x34
0x01 1000 ->
0x01 53FF

- -
0x01 1000 ->
0x01 53FF

-

0x35
0x01 5400 ->
0x01 57FF

- -
0x01 5400 ->
0x01 57FF

-

0x36
0x01 5800 ->
0x01 5BFF

- -
0x01 5800 ->
0x01 5BFF

-

0x37
0x01 5C00 ->

0x01 5FFF
- -

0x01 5C00 ->
0x01 5FFF

-

Table 9. STM8 sector codes (continued)

Sector
code

Flash program memory/data EEPROM

STM8AF and
STM8S Series
high density

STM8AF and
STM8S Series

medium density

STM8L and
STM8AL Series
medium density

STM8L and
STM8AL Series
high/medium

+ density

STM8L Series
low density

Bootloader command set UM0560

54/75 DocID14798 Rev 10

0x38
0x01 6000 ->
0x01 63FF

- -
0x01 6000 ->
0x01 63FF

-

0x39
0x01 6400 ->
0x01 67FF

- -
0x01 6400 ->
0x01 67FF

-

0x3A
0x01 6800 ->
0x01 6BFF

- -
0x01 6800 ->
0x01 6BFF

-

0x3B
0x01 6C00 ->

0x01 6FFF
- -

0x01 6C00 ->
0x01 6FFF

-

0x3C
0x01 7000 ->
0x01 73FF

- -
0x01 7000 ->
0x01 73FF

-

0x3D
0x01 7400 ->
0x01 77FF

- -
0x01 7400 ->
0x01 77FF

-

0x3E
0x01 7800 ->
0x01 7BFF

- -
0x01 7800 ->
0x01 7BFF

-

0x3F
0x01 7C00 ->

0x01 7FFF
- -

0x01 7C00 ->
0x01 7FFF

-

0x40
0x01 8000 ->
0x01 83FF

- -
0x00 1000 ->
0x00 13FF

-

0x41
0x01 8400 ->
0x01 87FF

- -
0x00 1400 ->
0x00 17FF

-

0x42
0x01 8800 ->
0x01 8BFF

- - - -

0x43
0x01 8C00 ->
0x01 18FFF

- - - -

0x44
0x01 9000 ->
0x01 93FF

- - - -

0x45
0x01 9400 ->
0x01 97FF

- - - -

0x46
0x01 9800 ->
0x01 9BFF

- - - -

0x47
0x01 9C00 ->

0x01 9FFF
- - - -

0x48
0x01 A000 ->
0x01 A3FF

- - - -

0x49
0x01 A400 ->
0x01 A7FF

- - - -

0x4A
0x01 A800 ->
0x01 ABFF

- - - -

Table 9. STM8 sector codes (continued)

Sector
code

Flash program memory/data EEPROM

STM8AF and
STM8S Series
high density

STM8AF and
STM8S Series

medium density

STM8L and
STM8AL Series
medium density

STM8L and
STM8AL Series
high/medium

+ density

STM8L Series
low density

DocID14798 Rev 10 55/75

UM0560 Bootloader command set

74

0x4B
0x01 AC00 ->

0x01 AFFF
- - - -

0x4C
0x01 B000 ->
0x01 B3FF

- - - -

0x4D
0x01 B400 ->
0x01 B7FF

- - - -

0x4E
0x01 B800 ->
0x01 BBFF

- - - -

0x4F
0x01 BC00 ->

0x01 BFFF
- - - -

0x50
0x01 C000 ->
0x01 C3FF

- - - -

0x51
0x01 C400 ->
0x01 C7FF

- - - -

0x52
0x01 C800 ->
0x01 CBFF

- - - -

0x53
0x01 CC00 ->

0x01 CFFF
- - - -

0x54
0x01 D000 ->
0x01 D3FF

- - - -

0x55
0x01 D400 ->
0x01 D7FF

- - - -

0x56
0x01 D800 ->
0x01 DBFF

- - - -

0x57
0x01 DC00 ->

0x01 DFFF
- - - -

0x58
0x01 E000 ->
0x01 E3FF

- - - -

0x59
0x01 E400 ->
0x01 E7FF

- - - -

0x5A
0x01 E800 ->
0x01 EBFF

- - - -

0x5B
0x01 EC00 ->

0x01 EFFF
- - - -

0x5C
0x01 F000 ->
0x01 F3FF

- - - -

0x5D
0x01 F400 ->
0x01 F7FF

- - - -

Table 9. STM8 sector codes (continued)

Sector
code

Flash program memory/data EEPROM

STM8AF and
STM8S Series
high density

STM8AF and
STM8S Series

medium density

STM8L and
STM8AL Series
medium density

STM8L and
STM8AL Series
high/medium

+ density

STM8L Series
low density

Bootloader command set UM0560

56/75 DocID14798 Rev 10

0x5E
0x10 F800 ->
0x10 FBFF

- - - -

0x5F
0x10 FC00 ->

0x10 FFFF
- - - -

0x60
0x20 0000 ->
0x20 03FF

- - - -

0x61
0x20 0400 ->
0x20 07FF

- - - -

0x62
0x02 0800 ->
0x02 0BFF

- - - -

0x63
0x02 0C00 ->

0x02 0FFF
- - - -

0x64
0x02 1000 ->
0x02 13FF

- - - -

0x65
0x02 1400 ->
0x02 17FF

- - - -

0x66
0x02 1800 ->
0x02 1BFF

- - - -

0x67
0x02 1C00 ->

0x02 1FFF
- - - -

0x68
0x02 2000 ->
0x02 23FF

- - - -

0x69
0x02 2400 ->
0x02 27FF

- - - -

0x6A
0x02 2800 ->
0x02 2BFF

- - - -

0x6B
0x02 2C00 ->

0x02 2FFF
- - - -

0x6C
0x02 2000 ->
0x02 23FF

- - - -

0x6D
0x02 2400 ->
0x02 27FF

- - - -

0x6E
0x02 3800 ->
0x02 3BFF

- - - -

0x6F
0x02 3C00 ->

0x02 3FFF
- - - -

0x70
0x02 4000 ->
0x02 43FF

- - - -

Table 9. STM8 sector codes (continued)

Sector
code

Flash program memory/data EEPROM

STM8AF and
STM8S Series
high density

STM8AF and
STM8S Series

medium density

STM8L and
STM8AL Series
medium density

STM8L and
STM8AL Series
high/medium

+ density

STM8L Series
low density

DocID14798 Rev 10 57/75

UM0560 Bootloader command set

74

0x71
0x02 4400 ->
0x02 47FF

- - - -

0x72
0x02 4800 ->
0x02 4BFF

- - - -

0x73
0x02 4C00 ->

0x02 4FFF
- - - -

0x74
0x02 5000 ->
0x02 53FF

- - - -

0x75
0x02 5400 ->
0x02 57FF

- - - -

0x76
0x02 5800 ->
0x02 5BFF

- - - -

0x77
0x02 5C00 ->

0x02 5FFF
- - - -

0x78
0x02 6000 ->
0x02 63FF

- - - -

0x79
0x02 6400 ->
0x02 67FF

- - - -

0x7A
0x0 26800 ->
0x0 26BFF

- - - -

0x7B
0x02 6C00 ->

0x0 26FFF
- - - -

0x7C
0x02 7000 ->
0x02 73FF

- - - -

0x7D
0x02 7400 ->
0x02 77FF

- - - -

0x7E
0x02 7800 ->
0x02 7BFF

- - - -

0x7F
0x02 7C00 ->

0x02 7FFF
- - - -

0x80
0x00 4000 ->
0x00 43FF

- - - -

0x81
0x00 4400 ->
0x00 47FF

- - - -

Table 9. STM8 sector codes (continued)

Sector
code

Flash program memory/data EEPROM

STM8AF and
STM8S Series
high density

STM8AF and
STM8S Series

medium density

STM8L and
STM8AL Series
medium density

STM8L and
STM8AL Series
high/medium

+ density

STM8L Series
low density

Bootloader command set UM0560

58/75 DocID14798 Rev 10

3.8 Software model (STM8AF, STM8AL, STM8L and STM8S
Series)

The boot code has been designed with the same logical protocol for exchanging command
frames between host and any device of STM8AF, STM8AL, STM8L and STM8S Series.

The boot code can download up to 128 bytes at a time. Bootloader variables occupy the
RAM from address 0x00 0000 up to address 0x00 009F.

If the bootloader is enabled (according to Table 4) and timeouts have elapsed (there is no
host activation or jump to the user application), the RAM content can be modified by the
bootloader. For example, if the user application is running and a reset occurs, the RAM
content in a given range is changed by the bootloader before the application restarts.

If the bootloader is disabled by using an option byte or ROP protection, the following minor
modifications of the user application are needed:

• STM8L and STM8AL Series devices and latest STM8AF and STM8S Series
bootloader versions (see Table 3): the RAM is not modified.

• STM8AF and STM8S Series devices with older bootloader versions: RAM is modified
at addresses 0x00 0095 and 0x00 0099.

Note: Unused (empty) bootloader ROM is filled with an opcode that is not allowed (0x71). If, for
any reason (i.e. EMC noise), the core starts to execute in the 0x71 area, an illegal opcode is
returned and consequently a reset. This prevents the bootloader falling into an infinite loop
with no reset in the event that it jumps in the ‘empty’ locations. Thus normal execution can
resume.

3.8.1 RAM erase/write routines

RAM erase/write routines are attached to this document as binary code files in S19 format.
The file name defines the STM8 group (e.g.128 Kbytes, 32 Kbytes, 8 Kbytes) and
bootloader version number for which the given routine is written.

To erase or program the Flash program memory or data EEPROM, the respective routines
must be downloaded into RAM starting at 0x00 00A0.

RAM erase/write routine naming example:

• 128-Kbyte (high density) devices of STM8AF and STM8S Series:
E_W_ROUTINEs_128K_ver_2.2.s19

• 32-Kbyte (medium density) devices of STM8AF and STM8S Series:
E_W_ROUTINEs_32K_ver_1.3.s19

• 8-Kbyte (low density) devices of STM8L and STM8AL Series:
E_W_ROUTINEs_8K_verL_1.0.s19 (this is just patch for internally stored RAM routine:
load of one byte 0xB2 to address 0x01EA)

• STM8L and STM8AL Series devices: no need to download RAM routines - the routines
are copied into RAM from ROM automatically when the bootloader is activated by the
host (after it has received a valid SYNCH byte)

Note: To execute any of the commands (get, read, erase, write, speed, and go), the bootloader
uses part of the RAM for its own variables and RAM erase/write routines. Therefore, it is
forbidden to run write commands (with the exception of write commands that are used for

DocID14798 Rev 10 59/75

UM0560 Bootloader command set

74

downloading erase/write routines) with destination addresses in the following RAM
locations:

• STM8AF and STM8S Series devices: 0x00 0000 to 0x00 01FF

• STM8L and STM8AL Series devices: 0x00 0000 to 0x00 01FF

Error management UM0560

60/75 DocID14798 Rev 10

4 Error management

The bootloader performs more internal checks including valid address range in commands,
commands checksum, and write verification. The bootloader does not check the UBC area
access. If a write is performed to a write-protected area, the verification fails and the
bootloader returns a NACK.

Table 10 describes the error type and the bootloader behavior.

Table 10. Error table

Error Description Bootloader actions

cmd_error

If a denied command is received

If a parity error occurs during command transmission

If an error occurs during the command execution

See Table 6: Bootloader commands on page 16

Sends NACK byte and goes
back to command checking

add_error
If a received command contains a denied destination
address. For information on valid address ranges, see
the product datasheets for STM8AF/AL/L/S devices.

Sends NACK byte and goes
back to command checking

DocID14798 Rev 10 61/75

UM0560 Programming time

74

5 Programming time

The programming time depends on the baud rate speed of the peripheral. Programming
time examples measured on the following interfaces and speeds include:

• USART/LINUART/UART1/UART2/UART3: 128 Kbit/s, 256 Kbit/s, and 500 Kbit/s

• SPI: 125 Kbit/s, 250 Kbit/s, 500 Kbit/s, and 1 Mbit/s

• CAN: 125 Kbit/s, 250 Kbit/s, 500 Kbit/s, and 1 Mbit/s

Note: Measurements were performed on 48-Kbyte or 32-Kbyte blocks independent of the device
type and peripheral used.

Table 11, Table 12, and Table 13 show the programming times for the
USART/LINUART/UART1/UART2/UART3, SPI, and CAN respectively.

Table 11. USART/LINUART/UART1/UART2/UART3 programming times

Time to load Kbytes/block/bytes in
the Flash program memory

Baud rate (bps)

128000 256000 500000

48 Kbytes 7.73 s 5.34 s 4.08 s

1 block 20.13 ms 13.53 ms 10.65 ms

1 byte 7.52 ms 6.93 ms 6.65 ms

Table 12. SPI programming time

Time to load Kbytes/block/bytes
in the Flash program memory

Baud rate

125 Kbit/s 250 Kbit/ 500 Kbit/ 1 Mbit/

32 Kbytes 4.46 s 3.34 s 2.81 s 2.55 s

1 block 17.44 ms 13.04 ms 11.01 ms 9.95 ms

1 byte 8.52 ms 8.12 ms 7.93 ms 7.84 ms

Table 13. CAN programming time

Time to load Kbytes/block/bytes
in the Flash program memory

Baud rate

125 Kbit/ 250 Kbit/ 500 Kbit/ 1 Mbit/

48 Kbytes 9.50 s 6.40 s 4.85 s 4.07 s

1 block 24.73 ms 16.66 ms 12.63 ms 10.60 ms

1 byte 9.23 ms 8.53 ms 7.91 ms 7.68 ms

How to upgrade ROP protected device UM0560

62/75 DocID14798 Rev 10

Appendix A How to upgrade ROP protected device

The readout protection (ROP) feature prevents the device memory content being read
through the SWIM interface. During its initialization, the bootloader checks the ROP state
(by checking the ROP option byte) and if it is enabled the bootloader is not activated. This
prevents the memory content being read through the bootloader (or a Trojan horse being
written and executed).

However, in practice, the user may need to have the ROP protection enabled and still be
able to upload new firmware through IAP (in-application programming). This can be done
via a user application and bootloader interaction, subject to the following rules.

A.1 Rules for upgrading ROP protected devices

1. The device must be ROP protected (to disable reading through the SWIM).

2. The bootloader is not activated after reset due to the check on the ROP state (to
disable reading through the bootloader).

3. The user application is responsible for enabling a device update after user
authentication, for example, after a user password check.

4. The user application then allows the authenticated user to invoke the bootloader (by
jumping to a bootloader specific address). The bootloader can then update the user
application in the normal way.

Following the above rules, the user application can be updated by the resident ROM
bootloader. The only condition is that the user application must interact with the upload
process as outlined below:

• The application must implement an authentication procedure (for example by sending
an authentication command with a password through the communication interface).

• The application must jump to the “ROP check” in which the bootloader entry point is
checked. See Table 14: Bootloader entry points for the addresses of the principle
bootloader entry points.

DocID14798 Rev 10 63/75

UM0560 Bootloader entry points

74

Appendix B Bootloader entry points

The ROM bootloader can be activated by the host after device reset. However the
bootloader can also be used by the user application for various purposes. Table 14 lists the
main bootloader entry points and describes how they can be used by the user application.

Table 14. Bootloader entry points

Before jumping to the entry point, the user application must configure all used peripherals
(timers, communication peripherals, GPIO pins on communication peripherals) to their reset
state to be able to continue correctly in bootloader. Bootloader is designed to be run after
device reset where all peripherals are in reset state.

Entry
point
name

Address and bootloader version(1)

1. The address depends on the bootloader version and may be changed in the next bootloader version. Contact your local
STMicroelectronics office for the latest information.

Usage
STM8AF

and STM8S
Series

high density

STM8AF and
STM8S
Series

medium
density

STM8L and
STM8AL
Series

medium
density

STM8L and
STM8AL
Series

high/medium
+ density

STM8L and
STM8AL
Series

low density

Reset 0x00 6000 0x00 6000 0x00 6000 0x00 6000 0x00 6000
Bootloader starts here.
Can be used to perform a
hard reset

BL
option
check

0x00 601E
(v2.1)(2)

0x00 601E
(v2.2)

2. The RAM variable at address 0x00 0099 should be set to the value 0x00 or 0x01 for this bootloader version (0x00 = no
timeout, 0x01 = 1 second bootloader timeout).

0x00 601E
(v1.2)(3)

0x00 6018
(v1.3)

3. The RAM variable at address 0x00 0095 should be set to the value 0x00 or 0x01 for this bootloader version (0x00 = no
timeout, 0x01 = 1 second bootloader timeout).

0x00 601A
(v1.1)

0x00 601F
(v1.2)

0x00 601F
(v1.1)

0x00 601F
(v1.0)

Point after checking if
bootloader is enabled by
option byte. Can be used
to jump to the bootloader
which was disabled by the
option bytes.

ROP
check

0x00 602E
(v2.1)(2)

0x00 602E
(v2.2)

0x00 602E
(v1.2)(3)

0x00 6028
(v1.3)

0x00 6028
(v1.1)

0x00 602D
(v1.2)(4)

4. No ROP check entry point is defined for bootloader version 1.0.

0x00 602D
(v1.1)

0x00 602D
(v1.0)

Point after checking
readout protection. Can be
used to jump to the
bootloader - if ROP is
active - for upgrading an
ROP-protected device after
master user authentication.

Bootloader entry points UM0560

64/75 DocID14798 Rev 10

Note: For all devices, before jumping to the bootloader entry point, it is necessary to refresh the
TIM2 and TIM3 prescaler shadow registers to value 1 with the following recommended
code:

...

TIM3->EGR = 0x01; // invoke update event to refresh TIM3 prescaler to 1

TIM3->SR1; // clear generated update event flag in TIM3_SR1 by reading it

TIM3->SR1 = 0x00; // and by writing zero to it

_asm("jp 0x601E"); // jump to given entry point address

...

DocID14798 Rev 10 65/75

UM0560 SPI peripheral timing options

74

Appendix C SPI peripheral timing options

C.1 SPI with busy state checking

Sections 3.3.2: Erase memory command via SPI and 3.4.2: Write memory command via
SPI contain flowcharts for the SPI erase and write commands. A disadvantage of the SPI
interface is that it is driven by the host which controls the transfers by polling the data from
the device. If the device is busy (for example, if it is programming the Flash memory), the
device answers by writing the last byte in the SPI data register (which is the last sent byte
from the previous polling). So the host has no way of knowing if the received byte is the
correct (new) answer or the byte from the previous answer.

In practice, if the host asks the device to complete an ongoing erase or write command
(ACK or NACK from the device after the operation is finished), it knows that the device is not
busy and has finished operations. So the host must add an appropriate minimum delay to
allow the device to finish an operation (see the “Delay” box in Figure 17 and Figure 23.
Otherwise, the answer is meaningless and communication is desynchronized.

This behavior is specific only to host driven interfaces such as the SPI. Other interfaces
used by the bootloader, including the UART and CAN, are not master driven (and the device
can answer without host polling).

C.2 Modified erase/write RAM routines

To remove dependency from delay implementations on the host side and to speed up SPI
communication (because delays with a margin are longer), special erase/write RAM
routines have been developed. These RAM routines perform long-time operations such as
standard erase/write operations. During device busy state, they send a “BUSY” byte (0xAA)
answer to the host. The host can then periodically ask the device for an answer and the
device sends a “BUSY” answer until the operation is finished. When the operation is
finished, the device answers with an ACK or NACK according to the operation result. At this
point, the “Delay” box in Figure 17 and Figure 23 is replaced with a polling loop until the
ACK or NACK answer is received.

Modified erase/write RAM routines for SPI polling support are provided with STM8AF/S
32-Kbyte devices. STM8L/AL devices natively support RAM routines with a BUSY status
reply.

Figure 35. Delay elimination in modified RAM routines

PC software support UM0560

66/75 DocID14798 Rev 10

Appendix D PC software support

To support the bootloader, STMicroelectronics provides a PC demo application known as
"Flash loader demonstrator" which allows the user to upload firmware into the STM8 device
through the UART interface (RS-232 on PC side). The software runs under Microsoft®
Windows® and can be downloaded from www.st.com.

With this software, any firmware stored in an “*.s19” file can be uploaded to an
STM8AF/AL/L/S device. It also performs verification of the uploaded firmware and
automatic erasing.

Figure 36. "Flash loader demonstrator" software

DocID14798 Rev 10 67/75

UM0560 Bootloader UART limitation

74

Appendix E Bootloader UART limitation

E.1 Description

The bootloader limitation is not caused by a wrong bootloader implementation, or a non-
compliance with specifications, but results from customer specific usage of the STM8 ROM
bootloader.

To prevent future problems for occurring, use the workarounds that apply to your specific
case (see Section E.2: Workaround for UART limitation).

E.1.1 UART automatic baudrate calculation

As explained in Section 2.1: USART/UARTs settings, the bootloader polls all peripherals
(CAN, SPI, UART, SPI) waiting for a synchronization byte. The communications start when
a synchronization byte equal to 0x7F has been received.

For UART communications, the baudrate at which UART data transfers are performed by
the master is unknown whereas it is preknown for SPI communications, and fixed to
125 Kbit/s for CAN.

Before initializing the UART interface, the bootloader waits for the 0x7F byte, and deduces
the master baudrate from the speed at which the synchronization byte is sent. This is called
the automatic baudrate mechanism. This is done by polling the RxD GPIO pin.

1. The master sends 0x7F in serial format (LSB first) through the UART interface. 0x7F is
composed of:

– Start bit (‘0’)

– 7 consecutive logical 1s bits (LSB first)

– 1 logical ‘0’ (MSB bit of 0x7F)

– Even parity bit (‘1’)

– Stop bit (‘1’)

2. The bootloader polls the RxD pin and waits for the start bit (‘0’).

3. The bootloader starts the timer just after a rising edge has been detected on RxD (LSB
bit) and measures the duration of the 7 logical 1s transmission.

4. The bootloader stops the timer when a falling edge is detected on RxD (end of 7
consecutive logical 1s – beginning of MSB). The number of timer ticks represents the
duration the 7 logical 1s. The bootloader deduces the time required to transmit one bit
by dividing the timer ticks by 7, calculates the baudrate, and initializes the UART
baudrate accordingly. The bootloader is then ready to receive the next command from
the master.

E.1.2 Description of UART limitation

Automatic baudrate calculation assumes that the master sends 0x7F as synchronization
byte. However, the calculated baudrate is incorrect if the master sends a value different from
0x7F. This is due to fact that the bootloader expects 7 consecutive logical 1s after the start
bit.

As an example, if the master sends 0x78 as synchronization byte, the start bit is followed by
4 consecutive logical 1s. Since the bootloader expects 7 consecutive 1s, the baudrate
computed by the bootloader is 7/4 of the master baudrate. The next communication

Bootloader UART limitation UM0560

68/75 DocID14798 Rev 10

between master and bootloader fails due to indifferent baudrates, and the bootloader enters
an endless loop waiting for valid master command. This state can only be exited by
resetting the STM8 device.

The master must consequently send 0x7F after reset to launch the bootloader correctly or
must sent nothing during 1 second after reset to avoid launching the bootloader and
continue executing the user application. Any another byte sent to the bootloader up to
1 second after reset causes the bootloader to enter an endless loop.

This situation may occur in user application if the STM8 device is reset and huge data
transfers are in progress through the UART interface. The device then enters an endless
loop due to several synchronization byte reception.

E.2 Workaround for UART limitation

The issue described above can be fixed by using the workaround below.

This workaround consists in modifying your application code and the device configuration. It
is recommended if your application is subject to enter an endless loop when starting UART
communications. The following steps are required:

1. Disable the bootloader by using the option bytes (disabled on virgin devices).

2. Insert in your application code a routine that invokes the bootloader when a firmware
upgrade is required, e.g. your code jumps to given bootloader entry point after pressing
a button (see Appendix B: Bootloader entry points for details on entry point addresses).

As a result the bootloader is not active after reset and will not enter an endless loop when
receiving random UART bytes. After reset the bootloader executes the application code
without any delay, which is also a benefit for your application.

If an upgrade of the application code is required, follow the sequence below:

1. Press the button so that the code invokes the bootloader and jumps to a given
bootloader entry point. You must make sure that a master device is connected to the
UART interface and no random byte is sent.

2. Run the master to upgrade the code through the standard ROM bootloader.

3. Reset the device when the upgrade is complete.

Invoking the bootloader by pressing a button can be replaced by any similar action, e.g.
receiving a specific command or an authentication password to launch an upgrade of the
application code (only authenticated person can upgrade).

The programming operation might crash during code upgrade (for example when powering
off the device). In this case, the bootloader cannot be entered again because the application
code was not properly upgraded and is invalid. To prevent this issue from occurring, it is
recommended that the master executes the following steps before entering the bootloader:

1. Enable the ROM bootloader through the option bytes before downloading the
application code into device.

2. Download the application code and verify it.

3. Disable again the ROM bootloader by using the option bytes.

DocID14798 Rev 10 69/75

UM0560 Limitations and improvements versus bootloader versions

74

Appendix F Limitations and improvements versus
bootloader versions

A given STM8 group is associated with a specific bootloader code. This code has been
improved during the device life and new bootloader versions have been implemented. The
differences between bootloader versions are summarized in Table 15, together with the
limitations, improvements, and added features for a given bootloader version.

Table 15. Description of limitation, improvements and added features

STM8
group

Bootloader
version

Device revision Limitations, improvements, and added features

STM8AF
and

STM8S
Series
high

density

2.1 Rev X

Initial version

Limitations:

– CPU clock is set to HSI/1 (16 MHz) when bootloader resumes

– CAN interface does not work correctly. Contact your nearest
STMicroelectronics sales office for the CAN workaround that can
be implemented on this bootloader version.

2.2

Rev U and T:
STM8AFxxxx52xx,

STM8AF6269/8x/Ax

Rev Y, 6, W, 7:
STM8S207/208xx

Improvement:

– EMC lockup protection

Fixed limitations:

– CPU clock set back to reset state when bootloader resumes

– CAN peripheral works correctly

STM8AF
and

STM8S
Series

medium
density

1.2

Rev Y:
STM8AF612x/4x,
STM8AF6166/68

Rev Z:
STM8S105xx

Initial version

Limitations:

– Clock is set to 16MHz after GO command (HSI prescaller not set
back to reset value).

1.3

Rev X, W:
STM8AF622x/4x,
STM8AF6266/68

Rev Y, 6, X, 7:
STM8S105xx

Improvements:

– EMC lockup protection

Fixed limitations:

– After GO command is used default HSI clock speed.

Feature added:

– SPI peripheral uses BUSY flag (see Appendix C)

STM8L
and

STM8AL
Series
high/

medium+
density

1.0 Rev A

Initial version

Improvement:

– EMC lockup protection

Limitation:

– Bootloader clock disabled when bootloader resumes

1.1 Rev Z
Fixed limitations:

– Bootloader clock not disabled when bootloader resumes

Limitations and improvements versus bootloader versions UM0560

70/75 DocID14798 Rev 10

STM8L
and

STM8AL
Series

medium
density

1.0 Rev A

Initial version

Limitations:

– Readout protection option bit (ROP) not checked

– CPU clock is set to HSI/1 (16 MHz) when bootloader resumes

– Timeout for SYNCH byte receiving after reset is 500 ms instead
of 1 second.

1.1 Rev B

Limitations:

– CPU clock is set to HSI/1 (16 MHz) when bootloader resumes

– Timeout for SYNCH byte receiving after reset is 500 ms instead
of 1 second.

Fixed limitation:

– Readout protection option bit is checked

1.2 Rev Z

Improvement:

– EMC lockup protection

Limitations:

– If bootloader is enabled then before jumping into application
(after 1 second timeout or after GO command) it sets incorrect
MASS keys into the FLASH_PUKR register. This operation
blocks future write-unprotection state setting for program
memory. Because program memory has been set to write
unprotected state during bootloader initialization it stays in this
state until it is protected. If IAP operation is required in
application then application must never write-protect the
program memory, otherwise write-protection remains set until
the next device reset.

– If bootloader is enabled then before jumping into application
(after 1 second timeout) the data memory remained unprotected
(it was unprotected during bootloader initialization). To improve
application robustness the application should set data memory
to write-protected state.

– If ROP is active but bootloader is enabled by option bytes the
bootloader sets incorrect MASS keys into the FLASH_PUKR
register (immediately after ROP check). This operation
permanently locks program memory to write-protected state. If
IAP operation is required in application (with ROP active) then
bootloader must be also disabled by option bytes.

Fixed limitations:

– CPU clock is set back to its reset state when bootloader resumes

– Timeout for SYNCH byte receiving after reset has been changed
to 1 second.

Table 15. Description of limitation, improvements and added features (continued)

STM8
group

Bootloader
version

Device revision Limitations, improvements, and added features

DocID14798 Rev 10 71/75

UM0560 Limitations and improvements versus bootloader versions

74

STM8L
Series

low
density

1.1 Rev Z

Initial version

Limitations:

– If bootloader is enabled then before jumping into application
(after 1 second timeout) the program and data memories
remained unprotected (they were unprotected during bootloader
initialization). To improve application robustness the application
should set program and data memory to write-protected state.

All All All

When bootloader jumps into application after 1 second timeout, the
prescaler for TIM3 has no default prescaler value (divide by 1). The
prescaler register TIM3_PSCR has correct default value (0x0000)
but it is only transferred to real prescaler after TIM3 update event.
Therefore, in applications with bootloader enabled, it is necessary
to generate an update event (set UG bit in TIM3_EGR register) to
transfer TIM3_PSCR register value into the real prescaler.
Otherwise, the prescaler will be set to incorrect division factor until
next TIM3 update event.

Table 15. Description of limitation, improvements and added features (continued)

STM8
group

Bootloader
version

Device revision Limitations, improvements, and added features

Revision history UM0560

72/75 DocID14798 Rev 10

Revision history

Table 16. Document revision history

Date Revision Changes

15-Dec-2008 1 Initial release

10-Nov-2009 2

Added STM8L15xxx device and changed title of document to
STM8L/S.

Updated point 2 of the Flowchart description.

Added 2.1.1: LINUART/UARTs in “reply” mode settings.

Added Table 7: Bootloader codes.

Updated Section 3.8: Software model (STM8AF/AL/L/S) concerning
modification of the RAM content.

Added 3.8.1: RAM erase/write routines sections.

Added Appendix A: How to upgrade ROP protected device.

Added Appendix B: Bootloader entry points.

Added Appendix C: SPI peripheral timing options.

Added Appendix D: PC software support.

Edited English and rewrote several sections.

24-Aug-2010 3

Document merged with the STM8A bootloader user manual
(UM0500) and consequently, every section was reworked. The
sections: “LINUART settings” and “Memory model (STM8A)” were
removed. Additional technical changes include:

Updated point 5 of the Flowchart description.

Section 1.1: Bootloader activation: added important note about
CLK_CKDIVR register bug on STM8L devices.

Table 5: Serial interfaces associated with STM8 devices: added
devices which have no bootloader.

Section 2.3: CAN settings: replaced the transmit and receive settings
from the “STM8L/S” to the “STM8S”.

3.8.1: RAM erase/write routines: removed sentence “this is
necessary because the routines are consecutive with no empty
memory locations between them”.

Section 4: Error management: added new explanatory text.

Section 5: Programming time: replaced note.

DocID14798 Rev 10 73/75

UM0560 Revision history

74

17-Mar-2011 4

Changed hexadecimal notation for bytes and addresses.

Removed external crystal frequency condition of 16 MHz for CAN
transfer rate.

transfer rate in the Replaced device part numbers par STM8 groups.

Added Table 1: STM8 subfamilies featuring a bootloader and
Table 2: STM8 subfamilies without bootloader in Section 1:
Bootloader introduction.

Updated Table 3: Bootloader versions for which bootloader activation
flowchart is valid to replace device by STM8 groups, and add
STM8L-8K. In Section 1.1: Bootloader activation, removed important
note concerning STM8L15xxx devices, and clarified differences
between previous and newer bootloader.

Updated Table 5: Serial interfaces associated with STM8 devices.

Added STM8L-8K and STM8L-64K in Table 9: STM8 sector codes.

Updated RAM erase/write routine names in Section 3.8.1: RAM
erase/write routines.

Added STM8L-8K and updated Reset, BL option and ROP checks
for all the other groups in Table 14: Bootloader entry points.

Removed 16 Kbyte devices in Section C.2: Modified erase/write
RAM routines.

Added Appendix E: Bootloader UART limitation.

Added the device versions corresponding to each bootloader
version, as well as the limitation for bootloader version 1.2 of
STM8S/A-32K in Table 15: Description of limitation, improvements
and added features.

12-Dec-2011 5

Updated STM8S/A-128K and STM8S/A-32K device revisions in
Appendix F: Limitations and improvements versus bootloader
versions.

Updated disclaimer on last page.

19-Oct-2012 6

Added devices STM8S0xxx, STM8TL, and Value Line family
STM8L05x.

Changed bootloader group names throughout the document:

– “-128K” replaced with “-high density”

– “-32K” replaced with “-medium density”

– “-64K” replaced with “-high/medium+ density”

– “-8K” replaced with “-low density”

Added Table 1: Applicable products & example in Note: on page 28.

Updated:

– Table 1: STM8 subfamilies featuring a bootloader

– Table 2: STM8 subfamilies without bootloader

– Table 4: Initial checking

– Table 14: Bootloader entry points

– Figure 1: Bootloader activation flowchart

– Figure 22: Write memory command via
USART/LINUART/UART1/2/3 - device side

– Figure 24: Write memory command via SPI - device side

– Figure 26: Write memory command via CAN - device side.

Table 16. Document revision history (continued)

Date Revision Changes

Revision history UM0560

74/75 DocID14798 Rev 10

13-Nov-2012 7 Added STM8AL-medium density devices.

04-Nov-2013 8

Replaced Table 1: Applicable products with a list of products.
Modified Figure 1, Figure 17 Note, Section 3.8 second bullet,
Section 3.8.1 first 3 bullets. Added Note below Table 14, Added Note
3 to Table 15, modified STM8S/A medium density limitations, and
added text below this table.

04-Nov-2015 9

Table 1: STM8 subfamilies featuring a bootloader:

– STM8L051F3 replaced with STM8Lx51F3

– added STM8AL318x, STM8AL3L8x, STM8AL31E8x,
STM8AL3LE8x

Table 2: STM8 subfamilies without bootloader - added
STM8AF621x/2x

Table 3, Table 5, Table 9 and Table 15 - added STM8AL
high/medium+ density

Minor modification of Figure 1: Bootloader activation flowchart.

Added “in reply mode” to LINUART in Table 5: Serial interfaces
associated with STM8 devices.

Added pin settings in Section 2: Peripheral settings, to Section 2.1:
USART/UARTs settings, to Section 2.1.1: LINUART/UARTs in “reply”
mode settings, to Section 2.2: SPI settings and to Section 2.3: CAN
settings.

Added detail in bulleted list of Section 3.8.1: RAM erase/write
routines.

Added TIM2 to the note in Section Appendix B: Bootloader entry
points and making it apply to all devices.

Added limitation for all devices with respect to TIM3, in Table 15:
Description of limitation, improvements and added features and
updating STM8L-low density bootloader version to 1.1.

STM8A replaced with STM8AF and STM8A/L/S with
STM8AF/AL/L/S in the whole document (except in references to
other documents)

5-Sep-2017 10
Updated Table 1: STM8 groups featuring a bootloader and Table 2:
STM8 groups without bootloader.

Table 16. Document revision history (continued)

Date Revision Changes

DocID14798 Rev 10 75/75

UM0560

75

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

	1 Bootloader introduction
	Table 1. STM8 groups featuring a bootloader
	Table 2. STM8 groups without bootloader
	1.1 Bootloader activation
	Table 3. Bootloader versions for which bootloader activation flowchart is valid
	Figure 1. Bootloader activation flowchart
	Table 4. Initial checking

	2 Peripheral settings
	Table 5. Serial interfaces associated with STM8 devices
	2.1 USART/UARTs settings
	2.1.1 LINUART/UARTs in “reply” mode settings

	2.2 SPI settings
	2.3 CAN settings
	Figure 2. CAN frame

	3 Bootloader command set
	Table 6. Bootloader commands
	Table 7. Bootloader codes
	3.1 Get command
	3.1.1 Get command via USART/LINUART/UART1/ UART2/UART3
	Figure 3. Get command via USART/LINUART/UART1/UART2/UART3 - host side
	Figure 4. Get command via USART/LINUART/UART1/UART2/UART3 - device side

	3.1.2 Get command via SPI
	Figure 5. Get command via SPI - host side
	Figure 6. Get command via SPI - device side

	3.1.3 Get command via CAN
	Figure 7. Get command via CAN - host side
	Figure 8. Get command via CAN - device side

	3.2 Read memory command
	3.2.1 Read memory command via USART/LINUART/UART1/2/3
	Figure 9. Read memory command via USART/LINUART/UART1/UART2/UART3 - host side
	Figure 10. Read memory command via USART/LINUART/UART1/UART2/UART3 - device side

	3.2.2 Read memory command via SPI
	Figure 11. Read memory command via SPI - host side
	Figure 12. Read memory command via SPI - device side

	3.2.3 Read memory command via CAN
	Figure 13. Read memory command via CAN - host side
	Figure 14. Read memory command via CAN - device side

	3.3 Erase memory command
	3.3.1 Erase memory command via USART/LINUART/UART1/2/3
	Figure 15. Erase memory command via USART/LINUART/UART1/2/3 - host side
	Figure 16. Erase memory command via USART/LINUART/UART1/2/3 - device side

	3.3.2 Erase memory command via SPI
	Figure 17. Erase memory command via SPI - host side
	Figure 18. Erase memory command via SPI - device side

	3.3.3 Erase memory command via CAN
	Figure 19. Erase memory command via CAN - host side
	Figure 20. Erase memory command via CAN - device side

	3.4 Write memory command
	3.4.1 Write memory command via USART/LINUART/UART1/2/3
	Figure 21. Write memory command via USART/LINUART/UART1/UART2/UART3 - host side
	Figure 22. Write memory command via USART/LINUART/UART1/2/3 - device side

	3.4.2 Write memory command via SPI
	Figure 23. Write memory command via SPI - host side
	Table 8. Examples of delay
	Figure 24. Write memory command via SPI - device side

	3.4.3 Write memory command via CAN
	Figure 25. Write memory command via CAN - host side
	Figure 26. Write memory command via CAN - device side

	3.5 Speed command
	3.5.1 Speed command via CAN
	Figure 27. Speed command via CAN - host side
	Figure 28. Speed command via CAN - device side

	3.6 Go command
	3.6.1 Go command via USART/LINUART/UART1/UART2/UART3
	Figure 29. Go command via USART/LINUART/UART1/UART2/UART3 - host side
	Figure 30. Go command via USART/LINUART/UART1/UART2/UART3 - device side

	3.6.2 Go command via SPI
	Figure 31. Go command via SPI - host side
	Figure 32. Go command via SPI - device side

	3.6.3 Go command via CAN
	Figure 33. Go command via CAN - host side
	Figure 34. Go command via CAN - device side

	3.7 Sector codes
	Table 9. STM8 sector codes

	3.8 Software model (STM8AF, STM8AL, STM8L and STM8S Series)
	3.8.1 RAM erase/write routines

	4 Error management
	Table 10. Error table

	5 Programming time
	Table 11. USART/LINUART/UART1/UART2/UART3 programming times
	Table 12. SPI programming time
	Table 13. CAN programming time

	Appendix A How to upgrade ROP protected device
	A.1 Rules for upgrading ROP protected devices

	Appendix B Bootloader entry points
	Table 14. Bootloader entry points

	Appendix C SPI peripheral timing options
	C.1 SPI with busy state checking
	C.2 Modified erase/write RAM routines
	Figure 35. Delay elimination in modified RAM routines

	Appendix D PC software support
	Figure 36. "Flash loader demonstrator" software

	Appendix E Bootloader UART limitation
	E.1 Description
	E.1.1 UART automatic baudrate calculation
	E.1.2 Description of UART limitation

	E.2 Workaround for UART limitation

	Appendix F Limitations and improvements versus bootloader versions
	Table 15. Description of limitation, improvements and added features

	Revision history
	Table 16. Document revision history

